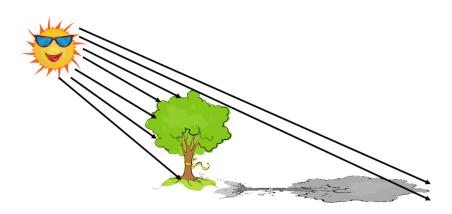

# **Light and Optics - Mirrors and Lenses** Name \_\_\_\_\_ Date \_\_\_\_\_ **Explaining Light Properties...** There are two theories to explain how light behaves... - The \_\_\_\_\_ of light that says that light is made up of tiny particles travelling in a \_\_\_\_\_\_. - The \_\_\_\_\_ of light that says that light travels in waves, and different colours have different \_\_\_\_\_ and \_\_\_\_\_. Ray Model of Light... Light \_\_\_\_\_\_ from the source in all directions as straight '\_\_\_\_\_'. These rays will keep on travelling in a straight line until they are bent (\_\_\_\_\_\_), bounced (\_\_\_\_\_\_), or \_\_\_\_\_\_\_. The colour of an object depends upon which colours are \_\_\_\_\_, and which are \_\_\_\_\_\_. \_\_\_\_\_ – light travels right through – objects can be clearly seen on the other side... Eg. Regular glass windows. A. Transparent \_\_\_\_\_ – some light goes through, some gets reflected back, and the image is fuzzy, or completely \_\_\_\_\_ Eg. A shower door

B. Translucent


— The light is either \_\_\_\_\_ or \_\_\_\_\_





C. Opaque

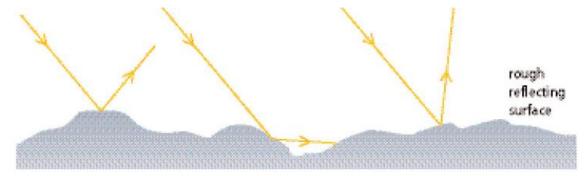
Causes shadows...



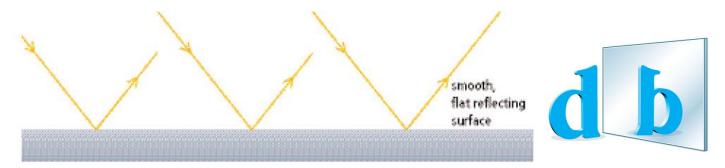
## Problem...

• With a ray diagram, show whether your shadow is longer at 1:00pm, or 5:00 pm.








### **Reflection:**

If an object is \_\_\_\_\_, light is \_\_\_\_ at all different angles...



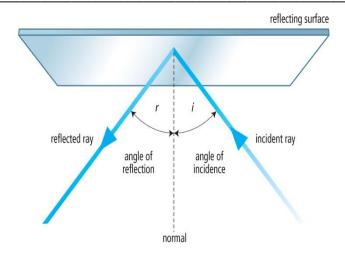
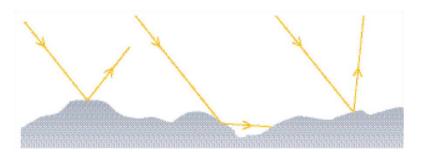
- (C) Rough surfaces appear to reflect light randomly.
- The surface is unequal, so the light gets bounced all over the place. No \_\_\_\_\_\_is \_\_\_\_\_.
- \_\_\_\_\_ will produce a visible image because all the rays reflect at the same \_\_\_\_\_.

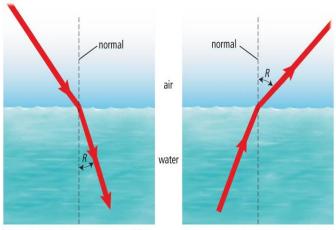


(A) Smooth surfaces reflect all light uniformly.

## Law of Reflection...

-

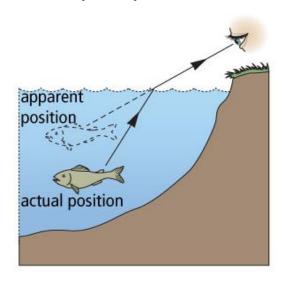





Figure 5.9 Light reflected from any surface follows the law of reflection.

The law of reflection applies even for uneven surfaces.



#### **Refraction:**


- When light enters a more dense substance (\_\_\_\_\_\_), it will \_\_\_\_\_, and \_\_\_\_\_, or '\_\_\_\_\_' towards the '\_\_\_\_\_\_'.
- When it enters a less dense substance, it will \_\_\_\_\_\_, and bend from the normal.



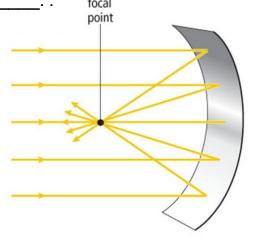
**Figure 5.11A** When light rays travel from air to water, they slow down and bend toward normal. *R* is the angle of refraction.

Figure 5.11B When light rays travel from water to air, they speed up and bend away from normal

This is seen when you look at a fish in the water – the fish looks \_\_\_\_\_\_than it really is because your eyes and brain don't account for the refraction.



#### Mirrors:


- \_\_\_\_\_\_ (flat) mirrors reflect exactly what is in front of them.
- Your eyes and brain don't account for the mirror, so it looks like the object is
- The distance from the object to the mirror is the \_\_\_\_\_as the apparent distance of the \_\_\_\_\_.

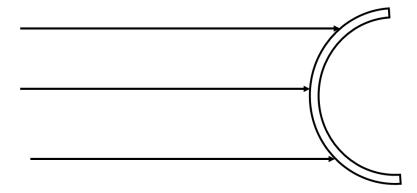


**Figure 5.16** When the boy blinks his right eye, the left eye of his image blinks.

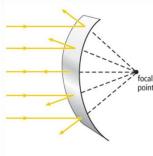
## **Concave Mirrors:**

- Mirrors that curve inward are called '\_\_\_\_\_\_' mirrors.
- When light hits them, it gets reflected inwards, or '\_\_\_\_\_' to a




**Figure 5.17** Light rays collected by a concave mirror converge on a focal point before spreading out again.

Images seen in a concave mirror are\_\_\_\_\_\_, unless you are in \_\_\_\_\_ of the focal point.


This kind of mirror is used in \_\_\_\_\_, and \_\_\_\_\_, and \_\_\_\_\_, and in \_\_\_\_, and in \_\_\_\_, more detailed image.

#### **Convex Mirrors**

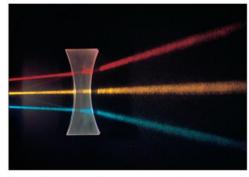
- Curved \_\_\_\_\_
- When light hits them, the rays \_\_\_\_\_, or spread out.



Note: There is still a focus, but it is 'invisible.

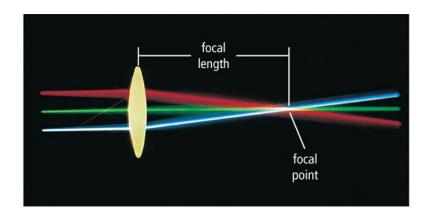


**Figure 5.20** The reflected rays from a convex mirror diverge and do not meet.

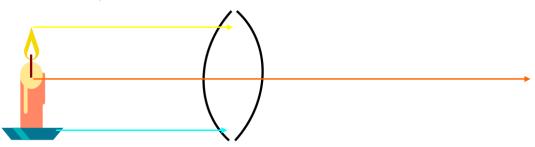

| • 1  | Images in convex mirrors appear to be | or | th | han |
|------|---------------------------------------|----|----|-----|
| they | really are                            |    |    |     |
|      | ed. Side view mirror in car           |    |    |     |

- There is also a wider '\_\_\_\_\_\_\_' you can see more in a convex mirror than you can in a plane mirror.
- Used as \_\_\_\_\_ mirrors.

#### **Concave Lenses:**


- Curved \_\_\_\_\_-
- Make light rays '\_\_\_\_\_\_'
- Make images \_\_\_\_\_ and \_\_\_\_.
- Used in some types of eyeglasses, and some \_\_\_\_\_.
- Note again, there is an 'invisible' focus.

**Convex Lenses:** 




**Figure 5.22** Light rays diverge when they pass through a concave lens.

- Curved \_\_\_\_\_ \_\_\_\_ in the \_\_\_\_\_.
- Causes light to '\_\_\_\_\_\_' to a focus.



Again, the image will be \_\_\_\_\_\_, unless you are looking at the image in \_\_\_\_\_ of the focal point.



- These lenses are used anywhere you want to '\_\_\_\_\_' something
  - Eg. Microscopes, magnifying glasses, some eyeglasses