Evolution of Populations

Name	
Date	
Block	
Natural select	ion acts on individuals
- differ	rential survival
0	"·····································
0	Limited quantities of lead to a struggle
	for survival results, and as a result those that are the
	can only survive.
- differ	rential reproductive success
0	·
Populations e	volve
	of population changes over time
- favor	able traits (greater fitness) become more
-	
Individuals DO	N'T evolve
Individuals <u>DOI</u>	<i>ive</i> or don't survive
Individuals	or don't
Individuals	
	·
Fitness	
<u>FILLESS</u> Survival & Don	reductive success
Survivar a nep	iduale with and
- Indiv	iduals with one leave more surviving onspring
Verietien 9 ne	tural colocition
variation & na	in the row meterial for network colorian
	IS the raw material for natural selection
0	there have to be differences within population
0	some individuals must be than others
	aniation a successfuence
where does v	ariation come from?
Mutation	
- rando	om changes to
0	errors in &
0	environmental
Sex	
- mixir	ng of (different versions of a gene)
0	of alleles
	new arrangements in every offspring
0	new combinations = new
- sprea	ads variation
. 0	offspring inherit
Agents of evo	lutionary change

- 1. Mutation & Variation
 - Mutation creates
 - o new mutations are constantly appearing

Mutation

- o changes amino acid sequence?
- o changes protein?
 - Changes_____?
 - ? changes
- changes in protein may change (physical characteristic) & therefore change

2. Gene Flow

- Movement of individuals & alleles in & out of _____
 - seed & pollen distribution by ______.
- migration of animals

 - o reduce differences between populations

Human evolution today

- Gene flow in human populations is increasing today
 - transferring alleles between populations

3. Non-random mating

- Sexual selection

4. Genetic drift

- Effect of _____
 - o _____
 - small group splinters off & starts a new
 - o some factor (disaster) reduces population to small number & then population recovers & expands again

Founder effect

- When a new population is started by only a few individuals
 - some rare alleles may be at high frequency; others may

• skew the of new population

- human populations that started from small group of
- example: colonization of New World

Bottleneck effect

- When large population is drastically _____
 - o famine, natural disaster, loss of habitat...
 - loss of variation by _____
 - alleles lost from gene pool
 - not due to ______

Cheetahs

- All cheetahs share a small number of alleles
 - less than 1% _____
 - as if <u>all</u> cheetahs are

- 2 bottlenecks -
 - \circ 10,000 years ago
 - Ice Age
 - o last 100 years
 - poaching & loss of habitat

Conservation issues

- Bottlenecking is an important concept in ______ of _ endangered species
 - loss of alleles from gene pool
 - 0 0

5. Natural selection

- Differential survival & reproduction due to
 - o climate change
 - food source availability
 - o predators, parasites, diseases
 - o toxins
- combinations of ______ that provide "_____"

o adaptive evolutionary change