Earthquakes 10.1 and 10.2

Name_	
Date _	
Block	

Causes of Earthquakes

•An earthquake happens every _______ in the world. Most are very small and unnoticeable.

•An Earthquake is a shaking of the Earth's crust caused by a release of energy.

00

0

•Most are caused by strain built up at boundaries between _____

•Friction prevents the plates from moving, and the pressure builds up like a spring deforming the plates. Finally the strain becomes too great, and the stored energy is _____

Called the '			;	
• The point where the earthquake actually starts is the '			' – usually several	
kilometers underground	l. –			
• The point on the earth	n's surface direct	tly above the focus is the '	·	
• The more the earthquake, the more			it can cause.	
• Energy released from • ar O ar Body waves •	an earthquake tr	ravels in travel through the earth s travel along the surface of t ' waves	the earth – produced by	

Body waves

• 'Primary' or 'P' waves are ______ waves, and can travel through any type of matter – solid (rock), and liquid (magma and water)

• 'Shear' or '_____' waves or 'S' waves travel at right angles to the direction the

waves are travelling. OWon't travel through liquids, only solids.

Speed of the waves is faster in rigid, more dense materials and slower in less rigid/dense materials. In solid materials, S waves travel a bit more than half speed of P waves.

Shake (shear) wave

Surface Waves

• '_____' waves cause particles of material to move ______ – like a sideways 'S' wave.

' waves move more slowly than Love waves

•Similar to ripples from a stone dropped in a pond.

•These types of waves travel more slowly than body waves, but the effects can be felt far away from the epicenter, and they can cause considerable damage.

Locating and Measuring Earthquakes

_____' detects and records waves produced by earthquakes. •A ' ODifferent types detect different types of waves/motion

_____' is the record sheet that comes out of the seismograph. It • A • consists of a pen that draws on a rotating drum. If the drum moves, the pen will draw

OThe bigger the 'Zig Zag', the more _____

Locating the Epicenter

•In order to find the origin point of the earthquake, ______ recording

station is used. Using the data collected from each station, one can find the _by looking at where the data overlaps.

Earthquake magnitude

The '______' of an earthquake is how much ______ is released.
One widely used method is the '______' scale developed by Charles Richter in

• Each whole number represents a _____ fold increase – for example, magnitude 2 is 31 times more powerful than magnitude 1. Magnitude 3 is (31×31) times more powerful than 1, etc.

• The Richter scale is limited in that it doesn't accurately indicate the amount of

_____released.

•Another way to describe this is '_____ magnitude' which measures the energy released at the earthquake's source.