Using Mirrors to Form Images

Textbook pages 182-189

Before You Read

You stand in front of a mirror. In what ways is your reflection the same as you? In what ways is your reflection different from you? Write your ideas on the lines below.

\Leftrightarrow Mark the Text

Identify Concepts
Highlight each question heading in this section. Then use a different colour to highlight the answers to the questions.

Reading Check

1. How is a concave mirror different from a convex mirror?
\qquad
\qquad

What happens when light rays strike curved mirrors?

You learned what happens to light rays when they reflect from a plane mirror in section 5.1. Light rays behave in a different way when they reflect from curved mirrors.

The light rays that reflect from a concave mirror meet (converge) at a single point. This point is called a focal point because the light rays focus together there. Light rays that meet at a focal point are called converging light rays.

The light rays that reflect from a convex mirror spread out (diverge). Light rays that spread out after they reflect from a convex mirror are called diverging light rays.

How do the images formed in mirrors compare?

All mirrors form images of objects because mirrors reflect the light that strikes them in a regular pattern. How the image looks depends on whether the mirror is flat or curved.

Appearance of image	Plane mirror	Concave mirror (if object is near the mirror)	Concave mirror (if object is far from the mirror)	Convex mirror
Object	0bject as seen in plane mirror	Object as seen in concave mirror (near mirror)	object as seen in concave mirror (farther from mirror)	Object as seen in convex mirror
Location	behind the mirror	behind the mirror	in front of the mirror	behind the mirror
Size	same size	larger than object	smaller than object	smaller than object
Shape	same shape	different shape	different shape	different shape
Left-right orientation	reversed	reversed	reversed	reversed
Up-and-down orientation	upright	upright	upside down	upright

Use with textbook pages 182-186.

Mirrors

Examine these diagrams. Then fill in the chart.

plane mirror

convex mirror

concave mirror

On the first line, identify whether the mirror is plane, convex, or concave. On the second and third lines, briefly explain how the mirror is used to see images.

1. full-length bedroom mirror

Use with textbook pages 182-186.

Flat mirrors and curved mirrors

Complete the following table describing the three different types of mirrors.

	Plane Mirror	Concave Mirror (object near to mirror)	Concave Mirror (object far from mirror)	Convex Mirror
Is the reflecting surface of the mirror flat, curved inward, or curved outward?				
Is the image smaller, larger, or the same size as the object?				
Is the image upright or upside down?				
Is the image the same shape as the object?				
Does the image seem to be behind the mirror or in front of the mirror?				
Draw and label one example of how this type of mirror might be used.				

